Exercise 14

Write a trial solution for the method of undetermined coefficients. Do not determine the coefficients.

$$
y^{\prime \prime}+4 y=\cos 4 x+\cos 2 x
$$

Solution

Since the ODE is linear, the general solution can be written as the sum of a complementary solution and a particular solution.

$$
y=y_{c}+y_{p}
$$

The complementary solution satisfies the associated homogeneous equation.

$$
\begin{equation*}
y_{c}^{\prime \prime}+4 y_{c}=0 \tag{1}
\end{equation*}
$$

This is a linear homogeneous ODE, so its solutions are of the form $y_{c}=e^{r x}$.

$$
y_{c}=e^{r x} \quad \rightarrow \quad y_{c}^{\prime}=r e^{r x} \quad \rightarrow \quad y_{c}^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into equation (1).

$$
r^{2} e^{r x}+4\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}+4=0
$$

Solve for r.

$$
r=\{-2 i, 2 i\}
$$

Two solutions to the ODE are $e^{-2 i x}$ and $e^{2 i x}$. By the principle of superposition, then,

$$
\begin{aligned}
y_{c}(x) & =C_{1} e^{-2 i x}+C_{2} e^{2 i x} \\
& =C_{1}(\cos 2 x-i \sin 2 x)+C_{2}(\cos 2 x+i \sin 2 x) \\
& =\left(C_{1}+C_{2}\right) \cos 2 x+\left(-i C_{1}+i C_{2}\right) \sin 2 x \\
& =C_{3} \cos 2 x+C_{4} \sin 2 x .
\end{aligned}
$$

On the other hand, the particular solution satisfies the original ODE.

$$
y_{p}^{\prime \prime}+4 y_{p}=\cos 4 x+\cos 2 x
$$

Since the inhomogeneous term is the sum of two cosine functions, the particular solution would be

$$
y_{p}=(A \cos 4 x+B \sin 4 x)+(C \cos 2 x+D \sin 2 x) .
$$

$\cos 2 x$ and $\sin 2 x$ already satisfy the complementary solution, though, so an extra factor of x is needed.

$$
y_{p}=(A \cos 4 x+B \sin 4 x)+x(C \cos 2 x+D \sin 2 x)
$$

